
要行之有效的复习计划:几十个人用一套复习方案与一个人用一套复习方案所达到的效果有着云泥之别。戴氏教育通过辅前精准测评,为每一个学生量身定制了适合的复习方案:从薄弱知识点巩固到知识运用拓展,从解题技巧到解题思维模式,从课上知识点讲解到课后作业落实是契合学生个人情况的!
要效果明显的复习模式:一个老师给几个学生上课的课堂效率是一个老师给几十个学生上课的几倍甚至几十倍。而对基础薄弱的学生来说,时间紧且任务重,课堂效率非常重要。而戴氏教育专为学考生打造的一对一文化课辅导以及2-6人全托小班辅导,是能在短时间内大化课堂效率的两种复习模式!
要专业负责的复习指导:面对复习困惑,学校的老师是否能够给你有用的建议:各个学科到底该怎么去复习?遇到不熟练的知识点只能死记硬背?除了刷题,还有没有更加有效的方法?......现在,学生们需要的不是“这个知识点你必须掌握”,而是“这个知识点你可以这样去掌握”。
要管理严谨的复习机构:戴氏教育不仅能帮助学生涨成绩,更重要的是能够帮助学生变得更好。每位学生在戴氏的课上和课后都有专门的老师管理,绝不会出现孩子无人管的情况!真正为学生着想的机构,从来不怕被比较和质疑!
高一物理教学反思:
新课程下高中物理教师进行教学反思可从理论和专业基础方面,教学基本策略方面进行。
第一、对理论和专业基础方面的反思。物理老师要进行教学反思,固然依赖于自身在教学实践中不断积累起来的经验,但是仅仅行停留在经验的认识上是远远不够的,因为教学是一种复杂的社会活动,对教学行为的反思需要以一定物理知识的教学理论和专业学识为基础。
1.转变物理教学理念。
教学理念是教学行为的理论支点。新课程背景下,物理教师应该经常反思自己或他人的教学行为,及时更新教学理念。新的教学理念认为,课程是教师、学生、教材、环境四个因素的整合。教学是一种对话、一种沟通、一种合作共建,而这样的教学所蕴涵的课堂文化,有着鲜明的和谐、民主、平等特色。那么,在教学中如何体现新的教学理念呢?即在教与学的交互活动中,要不断培养学生自主学习、探究学习和合作学习的习惯,提高他们独立思考、创新思维的能力。要转变教学理念,历史与社会教师应加强对历史与社会教学理论的研习,如《物理教学》、《中学物理教学参考》杂志开辟的一些栏目的讨论文章对更新教学理念就有许多帮助。
2.丰富物理专业学识。
学科专业知识对于新课程的实施以及开展教学反思,至关重要。历史与社会教师如何提高专业修养、丰富专业学识呢?关键是多研读物理学名著、物理学学术论文、物理著作等。阅读这些具有较高学术价值的名著,不但足以提高专业素质、分析史料、推理证明以及论断评价等研究方法。
第二、教学基本策略方面。
在一定的教学理论和学科专业基础上,新课程下物理教师主要以课堂为中心进行教学反思。
高二数学提分复习方法。
高二数学补习学习心得。
高二是承上启下的重要阶段。高二的学习直接影响到一轮复习的效果。而数学的学习更是难点。下面,看看过来人的高二数学学习体会的吧。
度过了貌似很轻松愉快的高一生活,我们昂首阔步来到了高二。对于数学一科,相当多的同学觉得高一阶段的知识非常可怕,不夸张的说高一阶段的知识比整个初中的知识总量还要多。如今到了高二,是不是知识更多更难了呢?
个人认为并不是这样的,高一阶段的知识强调的是理解,而高二阶段强调的是功力和技巧。差别并不在于难度,而在于学习的侧重点,可以说高二的很多知识是对高一知识的深化和拓展。举个例子,高一阶段我们学习了函数的相关性质,其中很重要的一条是单调性。高一我们对这个知识点的要求是会用“比较法”判断单调性,还要通过对图像的分析来对函数单调性有直观的感受。这些都是对函数单调性的理解,到了高二阶段,文科和理科学生都要学习一样新的工具--导数。也就是我们可以在不做函数图像,也不用“取点比较”的情况下直接判断函数的单调性和单调区间。而这种处理单调性问题的新方法需要的就是熟练掌握技巧和扎实的基本功。
还有几何方面,高一阶段我们大多数同学学过了直线和圆,这是解析几何的初步,相信很多同学对于解析几何复杂的运算至今还“意犹未尽”.那么到了高二阶段,我们将要学习更加复杂的三类曲线--椭圆、双曲线、抛物线。运算上难度大大增加,图形的复杂度也大大增加,但是就本质来说,考察的核心还是“在图形中寻找线索,在计算中得到结果”的解题思路。另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学们不用在复杂的立体图形中找辅助线了。当然,空间向量法带来的运算量也是相当大的。
最后在一些小知识点上也有所深化。还记得当初在学习概率的时候,我们实际没有学习任何的计算方法,当时我们算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就不得不把大量的时间浪费在数数上。在高二我们就会学到高手是怎样数数的,也就是所谓的计数原理。到时候同学们就会知道“乘法”比“加法”究竟能快多少,也能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。