
讲义教辅:内部专用讲义,各年级各科目直击学习内容
互动教学:双师课堂,学生积极参与互动,增强学习效果
作业批改:课后作业互动反馈,及时掌握学生学科弱点
答疑群:定时答疑,及时解决学生困惑
高二数学补习知识总结。
一、集合、简易逻辑(14课时,8个)
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)
1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
高二数学培训两大学习方法
一、学习问题自我评价
每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。对学习问题可主要从如下几方面进行自我评价:
1.时间安排问题
学习不良者应该反省下列几个问题: (1)是否很少在学习前确定明确的目标,比如要在多少时间里完成多少内容。(2)学习是否常常没有固定的时间安排。(3)是否常拖延时间以至于作业都无法按时完成。(4)学习计划是否是从来都只能在开头的几天有效。(5)一周学习时间是否不满10小时。(6)是否把所有的时问都花在学习上了。
2.注意力问题
(1)注意力完全集中的状态是否只能保持10至15分钟。(2)学习时,身旁是否常有小说、杂志等使我分心的东西。(3)学习时是否常有想入非非的体验。(4)是否常与人边聊天边学习。
3.学习兴趣问题
(1)是否一见书本头就发胀。(2)是否只喜欢文科,而不喜欢理科。(3)是否常需要强迫自己学习。(4)是否从未有意识地强化自己的学习行为。
4.学习方法问题
(1)是否经常采用题海战来提高解题能力。(2)是否经常采用机械记忆法。(3)是否从未向学习好的同学讨教过学习方法。(4)是否从不向老师请教问题。(5)是否很少主动钻研课外辅助读物。
一般而言,回答上述问题,肯定的答案 (回答“是”)越多,学习的效率越低。每个有学习问题的学生都应从上述四类问题中列出自己主要毛病,然后有针对性地进行治疗。例如一个学生毛病是这样的:在时间安排上,他总喜欢把任务拖到第二夫去做;在注意力问题上,他总喜欢在寝室里边与人聊天边读书;在学习兴趣上,他对专业课不感兴趣,对旁系的某些课却很感兴趣;在学习方法上主要采用机械记忆法。这位学生的病一列出来,我们就能够采取有效的治疗措施了。自我塑造法
上面介绍的SQ3R法是一种学习方法,仅可解决因方法缺乏而引起的学习上的问题。对于因其他原因而引起的学习问题,则还需综合考虑运用其他方法,自我塑造法即是一种综合法。