
今天成都戴氏教育学校高考全科集训中心为高三同学带来了乐山高考补课班哪里好,希望能帮助到各位同学有效的学习!同时我们也为同学们带来了相关的辅导班型以及辅导内容介绍,欢迎大家阅读了解
戴氏教育学校班型推荐
提高班:学习内容以课本为主,巩固课内基础知识,同时加强文言文字词理解与记忆的内容,培养一定的阅读能力。
达标班:学习课内重点古诗文,强化重点文言字词理解与记忆。训练各校阅读真题,在强化课内知识的基础上拓展课外知识。
精英班:立足成都中考,提升学生语文素能,学习内容以阅读、写作为主。在基本知识扎实的基础上有重点地进行课外知识拓展,以丰富学生的语文学习并拓宽阅读写作领域。
学霸班:首先夯实课内基础,规划知识体系。其次重综合性学习训练,按终点、常考作家、体裁排序,延伸课外阅读知识,提高对比阅读鉴赏能力。
高考数学:抓住这6大类型题
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
1、以学为先。
在他们心目中,学习是正事,理应先于娱乐,一心向学,气定神闲,心无旁骛,全力以赴,忘我备战。
2、随处学习。
善用零碎时间,每天在晨跑中、吃饭时、课间、课前、休息前等零碎时间里记忆词语,背诵公式,破解疑难,调整情绪。无论怎样各具特色,有一点他们是一致的:保证学习时间,学会见缝插针利用好空余时间,经过日积月累,效果很可观。
3、讲究条理。
将重要的学习用品和资料用书立或指向装好,分类存放,避免用时东翻西找。每天有天计划,每周有周计划,按计划有条不紊地做事,不一暴十寒。
4、学会阅读。
学会速读和精读,提高单位阅读量。学会读一本书或者一个单元的目录、图解和插图,提前了解内容,获取更有效的信息。当积极的阅读者,不断的提问,直到弄懂字里行间的全部信息为止,特别要弄懂知识的起点和终点,梳理好知识要点。
5、合理安排。
该做啥时就做啥,在合理的时候做合理的事情,不背道而驰。比如抓课堂效率,当堂听,当堂记,当堂理解,不理解的话课下或者当天找时间主动找老师请教,做到堂堂清。比如利用好时间,勉励自己完成当天的学习任务,做到日日清。比如能够劳逸结合,张弛有度,动静相宜。比如坚持紧跟老师步伐复习,不误入歧途。比如坚持勤睁眼常开口,对课本上的东西多看,对未懂的内容能多问。
6、善做笔记。
尖子生往往一边听课一边记重点,不是事无巨细全盘记录,特别善于记下老师补充的东西,课本上没有的东西特别是思维方法更是认真记录。能及时整理笔记,对老师强调的重要知识点格外注意,特别注意让知识系统化,积极思考能解决什麽问题。
7、作业规范。
认真审题,冷静应答,把每次作业当作高考,作业工整,步骤齐全,术语规范,表述严谨。规范不仅训练仔细认真品质,更能养成细心用心习惯,从而激发学习潜能。
8、勤于思考,善于思考。
这一条是重中之重,应贯穿于听课、做作业、复习等各个阶段。比如:做完一道题后,要对答案,这里应有一个反思的过程,要弄清这道题考的是什么,用了哪些方法,为什么用这样的方法,怎样才能达到举一反三、触类旁通的效果。
9、学习互助。
与同学开心地相处,遇事不斤斤计较,宽容豁达;珍视同学间的友谊,在学习中互相支持和帮助,经常一起讨论学习中的问题,使用不同的解题方法并相互交流心得。有了这种和谐的同学关系,才能全身心地投入到学习中,从而保持较高的学习效率。
10、自我调整。
不回避问题,遇到问题能通过找老师或者同学或者自我反思进行自我调节,摒弃外界和自身的压力,自觉地放下思想包袱,化压力为动力,不管是课业繁重还是轻松顺利时,都保持一颗平常心。不断地对自己进行积极的心理暗示,在这样不断的积极心理暗示下,信心值就不断上升,从一点信心都没有逐渐到有了坚强的不可动摇的信心,通过努力,去想了、去做了。
高考数学:集合与常用逻辑的复习
亚里士多德把命题首先分为简单的和复合的两类,但他对 复合命题并没有深入探讨。他进而把简单命题按质分为肯定的和否定的,按量分为全称、特称和不定的命题,例如,"愉快不是善"。他还提到个体命题,这相当于后来所谓的以专名为主项、以普遍概念为 谓项的单称命题。
亚里士多德着重讨论了后人以A、E、I、O为代表的4种命题。他所举出的例子是:"每个人是白的";"没有人是白的";"有人是白的";"并非每个人是白的"。关于 模态命题,他讨论了必然、不可能、可能和偶然这 4个模态词。亚里士多德所说的模态,是指事件发生的必然性、可能性等。
亚里士多德以后的逻辑学家,如泰奥弗拉斯多、 麦加拉学派和 斯多阿学派的逻辑学家,以及中世纪的逻辑学家等,又对包含有命题联结词"或者"、"并且"、"如果,则"等的复合命题进行了不断的探讨,从而丰富了逻辑学关于命题的学说。
传统逻辑分类
19世纪下半叶欧洲逻辑读本对命题的分类不尽一致。大体说来,按关系即按命题主谓项之间的关系分,有 直言命题、 假言命题(后件主谓项的联系以前件为条件)和 选言命题(谓项之间对 主项有选择关系)。从质的角度分,有肯定命题和否定命题。从量的角度分,有全称命题,包括单称命题、普遍命题(凡S是P)和 特称命题。
这些读本还讨论了其他一些关于数量多少的命题,如涉及"多数"、"少数"之类的命题;并认为,"多数 S是P"等值于"少数S不是P","少数 S是P"等值于"多数S不是P"。因此,从"所有S是P"推不出"多数S是P",也推不出"少数S是P"。这些传统逻辑读本在讨论选言命题时,也往往论及 联言命题、分离命题(非A并且非B)等。另外,还有一类可解析命题也是常常提到的。在这类命题中,有一种叫区别命题,其形式为"只有S才是P";还有一种叫除外命题,其形式为"除是M的S外每个S是P"。
命题的四种形式
1.对于两个命题,如果一个命题的条件和 结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的 逆命题。
2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的 否命题。